Landis-type conjecture for the half-Laplacian

نویسندگان

چکیده

In this paper, we study the Landis-type conjecture, i.e., unique continuation property from infinity, of fractional Schr\"{o}dinger equation with drift and potential terms. We show that if any solution decays at a certain exponential rate, then it must be trivial. The main ingredients our proof are Caffarelli-Silvestre extension Armitage's Liouville-type theorem.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Landis’ conjecture in the plane

In this paper we prove a quantitative form of Landis’ conjecture in the plane. Precisely, let W (z) be a measurable real vector-valued function and V (z) ≥ 0 be a real measurable scalar function, satisfying ‖W‖L∞(R2) ≤ 1 and ‖V ‖L∞(R2) ≤ 1. Let u be a real solution of ∆u − ∇(Wu) − V u = 0 in R2. Assume that u(0) = 1 and |u(z)| ≤ exp(C0|z|). Then u satisfies inf |z0|=R sup |z−z0|<1 |u(z)| ≥ exp(...

متن کامل

Pólya’s Conjecture Fails for the Fractional Laplacian

The analogue of Pólya’s conjecture is shown to fail for the fractional Laplacian (−∆) on an interval in 1-dimension, whenever 0 < α < 2. The failure is total: every eigenvalue lies below the corresponding term of the Weyl asymptotic. In 2-dimensions, the fractional Pólya conjecture fails already for the first eigenvalue, when 0 < α < 0.984. Introduction. The Weyl asymptotic for the n-th eigenva...

متن کامل

The Type I Generalized Half Logistic Distribution

In this paper, we considered the half logistic model and derived a probability density function that generalized it. The cumulative distribution function, the $n^{th}$ moment, the median, the mode and the 100$k$-percentage points of the generalized distribution were established. Estimation of the parameters of the distribution through maximum likelihood method was accomplished with the aid of c...

متن کامل

Vizing's conjecture and the one-half argument

The domination number of a graph G is the smallest order, γ(G), of a dominating set for G. A conjecture of V. G. Vizing [5] states that for every pair of graphs G and H, γ(G H) ≥ γ(G)γ(H), where G H denotes the Cartesian product of G and H. We show that if the vertex set of G can be partitioned in a certain way then the above inequality holds for every graph H. The class of graphs G which have ...

متن کامل

The Auslander-Reiten Conjecture for Group Rings

This paper studies the vanishing of $Ext$ modules over group rings. Let $R$ be a commutative noetherian ring and $ga$ a group. We provide a criterion under which the vanishing of self extensions of a finitely generated $Rga$-module $M$ forces it to be projective. Using this result, it is shown that $Rga$ satisfies the Auslander-Reiten conjecture, whenever $R$ has finite global dimension and $ga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2023

ISSN: ['2330-1511']

DOI: https://doi.org/10.1090/proc/16093